Source : 2010年NOIP提高组
Description
小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。
乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。

没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。
现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?
Input
输入的每行中两个数之间用一个空格隔开。
12个正整数NM,分别表示棋盘格子数和爬行卡片数。
2N个非负整数,a1, a2,......, aN,其中ai表示棋盘第i个格子上的分数。
3M个整数,b1,b2,......, bM,表示M张爬行卡片上的数字。输入数据保证到达终点时刚好用光M张爬行卡片,即
Output
输出只有1行,1个整数,表示小明最多能得到的分数。
Sample Input
9 5 
6 10 14 2 8 8 18 5 17 
1 3 1 2 1 
Sample Output
73
Hint
【输入输出样例说明】
小明使用爬行卡片顺序为11312,得到的分数为6+10+14+8+18+17=73。注意,由于起点是1,所以自动获得第1格的分数6