Source : 2016年NOIP普及组
Description

六十年一次的魔法战争就要开始了,大魔法师准备从附近的魔法场中汲取魔法能量。

大魔法师有m个魔法物品,编号分别为1,2,...,m。每个物品具有一个魔法值,我们用Xi表示编号为i的物品的魔法值。每个魔法值Xi是不超过n的正整数,可能有多个物品的魔法值相同。

大魔法师认为,当且仅当四个编号为a,b,c,d的魔法物品满足xa<xb<xc<xd,Xb-Xa=2(Xd-Xc),并且xb-xa<(xc-xb)/3时,这四个魔法物品形成了一个魔法阵,他称这四个魔法物品分别为这个魔法阵的A物品,B物品,C物品,D物品。

现在,大魔法师想要知道,对于每个魔法物品,作为某个魔法阵的A物品出现的次数,作为B物品的次数,作为C物品的次数,和作为D物品的次数。

Input

输入文件的第一行包含两个空格隔开的正整数n和m。

接下来m行,每行一个正整数,第i+1行的正整数表示Xi,即编号为i的物品的魔法值。

保证,,。每个Xi是分别在合法范围内等概率随机生成的。

Output

共输出m行,每行四个整数。第i行的四个整数依次表示编号为i的物品作 为A,B,C,D物品分别出现的次数。

保证标准输出中的每个数都不会超过10^9。

每行相邻的两个数之间用恰好一个空格隔开。

Sample Input
30 8 
1 
24 
7 
28 
5 
29 
26 
24
Sample Output
4 0 0 0 
0 0 1 0 
0 2 0 0 
0 0 1 1 
1 3 0 0 
0 0 0 2 
0 0 2 2 
0 0 1 0
Hint

【样例解释】

共有5个魔法阵,分别为:

物品1,3,7,6,其魔法值分别为1,7,26,29;

物品1,5,2,7,其魔法值分别为1,5,24,26;

物品1,5,7,4,其魔法值分别为1,5,26,28;

物品1,5,8,7,其魔法值分别为1,5,24,26;

物品5,3,4,6,其魔法值分别为5,7,28,29。

以物品5为例,它作为A物品出现了1次,作为B物品出现了3次,没有作为C物品或者D物品出现,所以这一行输出的四个数依次为1,3,0,0。

此外,如果我们将输出看作一个m行4列的矩阵,那么每一列上的m个数之和都应等于魔法阵的总数。所以,如果你的输出不满足这个性质,那么这个输出一定不正确。你可以通过这个性质在一定程度上检查你的输出的正确性。
每个测试点的详细数据范围见下表。