Source : 信息学奥赛一本通训练指导教程
Description
利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2+ bx + c = 0 的根,其中a不等于0。
Input
输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。
Output
输出一行,表示方程的解。
若b2 = 4 * a * c, 则两个实根相等,则输出形式为:x1=x2=...。
若b2 > 4 * a * c, 则两个实根不等,则输出形式为:x1=...;x2 = ...,其中x1>x2。
若b2 < 4 * a * c,则有两个虚根,则输出:x1=实部+虚部i; x2=实部-虚部i,即x1的虚部系数大于等于x2的虚部系数,实部为0时不可省略。实部 = -b / (2*a), 虚部 = sqrt(4*a*c-b*b) / (2*a)

所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。
Sample Input
1.0 2.0 8.0
Sample Output
x1=-1.00000+2.64575i;x2=-1.00000-2.64575i